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Abstract: The aim of this paper is to investigate the effect of slip velocity and axial
variation in blood viscosity on the flow dynamics within an artery characterized by
time-dependent stenosis. The blood viscosity is found to be contingent upon the
axial coordinate, leading to an ascending viscosity trend towards the highest point
of stenosis, followed by a subsequent descent. Employing analytical methodologies,
this study delves into the intricacies of the issue, deriving equations governing
volumetric flow rate, flow resistance, axial velocity and shearing stress on wall.
Notably, an increase in the stenosis height correlates with heightened flow resistance
and augmented wall shear stress. The novelty of this study lies in its comprehensive
approach to modeling the simultaneous effects of slip velocity and variable blood
viscosity in a time-varying stenosed artery, a topic previously unexplored.
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Nomenclature

(−t/T ) Dimensionless time

α Index of viscosity variation
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δ Height of stenosis

λ Resistance to flow

λk Dimensionless resistance to flow

µ(z) Viscosity of fluid

R(z, t) Distance between stenosis and center

τw Wall shear stress

τ̂w Dimensionless Wall shear stress

L Length of artery

L0 Length of stenosis

L1 Length of inlet zone

p Fluid pressure

Q Volumetric rate of flow

r Radial distance

R0 Normal Radius of artery

u Axial velocity

us Slip velocity

z Axial distance

1. Introduction

A human artery’s lumen can develop stenosis, an abnormal and unnatural
growth. A diameter decrease ranging from 60–75% of the major problematic artery
is typically thought of as a critical stenosis. To deal with such a high level of steno-
sis, certain medical procedures like balloon angioplasty, placement of a stent, or
arterial bypass grafting are carried out.
There have been various studies flow of blood through a mildly stenotic artery us-
ing mathematical models which analyze the influence of slip velocity or peripheral
plasma layer thickness on wall shear stress, flow resistance, velocity, etc. [2, 3, 19,
9]. The influence of pressure on fluid flow dynamics, such as velocity and flow rate
for the non Newtonian Casson fluid flow was investigated by [6] and [11] and the
studies report a decline in velocity with an increase in the Casson parameter. The
impact of viscosity of blood on the flow of blood and the effect of low molecular
weight Dextran were studied by [5]. The existence of a strong inverse relationship
between blood flow and changes in viscosity, the latter being three times greater
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than the former was shown by him. An analysis of blood flow in a stenosed artery
was carried out by [21], and [4]. [12] studied how blood flow through a stenosed
tub’s velocity profile is affected by viscosity’s concentration dependence. It is well
known that blood is a non-Newtonian fluid since it exhibits shear thinning and
shear thickening behaviours particularly because of RBCs [20] By taking into ac-
count the impact of shear thinning viscosity on the distributions of pressure and
shear stress at the wall, a steady axially symmetric flow in a constricted rigid tube
was studied by [14]. Advanced fluid dynamics and heat transfer involving hybrid
nanofluids and non-Newtonian fluids in complex geometries were explored, with
applications in biomedical and industrial fields by [6, 1, 15]. Analytical methods
and graphical interpretations highlight the effects of various physical parameters.
The analysis of advanced hybrid nanofluid flows which focuses on entropy genera-
tion, heat transfer, and flow optimization, integrating effects like magnetic fields,
viscous dissipation, and chemical reactions. were studied by [8, 17, 18, 10]. These
studies have applications in renewable energy systems and biomedical devices, sup-
ported by mathematical modeling and numerical methods. It is noteworthy, that
in all the aforementioned studies, the investigations have been carried out on ef-
fect of constant viscosity in blood flow in an artery with mild stenosis. However,
the impact of slip velocity and variation in blood viscosity on a stenosis which is
time-dependent has been overlooked. To analyze this aspect, it may be assumed
that blood viscosity axially decreases after increasing in the stenotic region up to
the point of the maximum height of stenosis. Hence, in this paper, the effect of
slip velocity and variations in blood viscosity on the blood flow within a diseased
artery is studied.

2. Formation and Analysis of Model
A steady blood flow of Newtonian, homogeneous blood is considered in a time-

dependent mild stenotic artery under slip velocity condition. The stenosis is ax-
isymmetrical, one-dimensional and is dependent upon z, the axial distance. Blood
is divided into three zones i.e., inlet, stenotic and outlet zone with the stenotic zone
being the site for the accumulation of red blood cells.
On the basis of the geometry of the stenosis, the radius of an artery in the stenotic
region can be expressed as follows:

R(z, t)

R0

=

{
1− σ(1−e−t/T )

2R0

{
1 + cos 2π

L0
(z − L1 − L0

2
)
}
,L1 ≤ z ≤ L1 + L0

1, 0 ≤ z ≤ L1, L0 + L1 ≤ z ≤ L

(1)
Where L0 denotes the stenosis length and σ indicates the highest point of the
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stenosis, which is thought to be much lower than the artery’s radius. (σ << R0).
The equation of one dimensional flow motion with viscosity as function of axial
distance, z, is given by,

0 = −dp

dz
+

µ(z)

r

d

dr

{
r
du

dr

}
(2)

Here, axial velocity is denoted by u, fluid pressure by p, and µ(z) denotes viscosity
as function of z. It is given as follows [7]:

µ(z, t) =

µ1

(
R(z,t)
R0

)−α

, L1 ≤ z ≤ L1 + L0

µ1, 0 ≤ z ≤ L1 and L0 + L0 ≤ z ≤ L
(3)

for α = 0, 1, 2, 3....
Here, viscosity of fluid, which is constant is represented by µ1 and α index

of viscosity variation which is an arbitrary parameter. The above mathematical
representation of viscosity variation is quite realistic as accumulation of blood cells
when the radius becomes minimum and viscosity maximum, ahead of the minimum
gap.
The boundary wall condition associated with equation (2) are listed below:

du

dr
= 0 at r = 0 (4)

u = us at r = R(z, t) (5)

On solving equation (1) using equations (4) and (5) we get the velocity function
u’:

u′ = us −
1

4µ

dp

dz
(R2 − r2) (6)

The volumetric rate of flow Q through the arterial segment is given by [13]:

Q =

∫ R

0

2πru′dr (7)

Upon solving equation (7) by integrating within limits 0 to R, we get:

Q = πR2us −
πR4

8µ

dp

dz
(8)

From equation (8), it is possible to determine the pressure gradient as

dp

dz
=

8µ

πR4

(
πR2us −Q

)
(9)
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Integrating equation (9) subject to condition p = p0 at z = 0 and p = pL at z = L
we have,

∆p = p0 − pL =
8G

π

(
Q− πR2us

)
(10)

where

G =

∫ L

0

µ(z, t)

R4
(11)

2.1. Methodology to obtain Resistance to Flow
The resistance to flow (λ), which has a physiological importance, is obtained

using the methodology explained below [7],

λ =
∆p

Q
=

8G

π
− 8GR2us

Q
(12)

Where ∆P is the difference between the pressure at the entry and exit level
respectively.

Now, we can rewrite the value of λ using the idea of viscosity variation given
by (3) as follows:

λ =
8µ1

πR0
4

L− L0 +

∫ L1+L0

L1

dz(
R(z,t)
R0

)4+α


− 8µ1us

QR0
2

L− L0 +

∫ L1+L0

L1

dz(
R(z,t)
R0

)4+α

 (13)

The effect of viscosity variation on the peripheral resistance is given by equation
(13). α = 0 denotes the case for constant viscosity and the result is the same as
given by [21]. It can be interpreted from equation (13) that an increase in the
value of α causes the peripheral resistance to flow to increase up to the highest
stenosis height possible for a stenosis of fixed size. Moreover, the variation in value
of λ with the height of stenosis implies that an increase in the height of stenosis
causes the peripheral resistance to increase. Taking λk as the non-dimensionalised
resistance to flow, we consider the following 3 cases to study the effect of α on λ:
For α = 0

λk =
λ0

λ0
′ =

(
1− usπR0

2

Q

)−1(
A0 −

usπR0
2

Q
B0

)
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Where A0 =

[
1− L0

L
+

L0

L

(
1− δ

R0

(e−t/T − 1)

)−7/2(
1− δ

2R0

(e−t/T − 1)

)
(
5

8

δ2

R0
2
(e−t/T − 1)2 − δ

R0

(e−t/T − 1) + 1

)]
B0 =

[
1− L0

L
+

L0

L

(
1− δ

2R0

(e−t/T − 1)

)(
1− δ

R0

(e−t/T − 1)

)−3/2
]

and λ0
′ =

8µ1L

πR0
4

(
1− usπR0

2

Q

)
(14)

For α = 1

λk =
λ1

λ1
′ =

(
1− usπR0

2

Q

)−1(
A1 −

usπR0
2

Q
B1

)
Where A1 =

[
1− L0

L
+

L0

4L

(
1− δ

R0

(e−t/T − 1)

)−9/2
(
8

(
1− δ

2R0

(e−t/T − 1)

)2

+3

(
δ

R0

(e−t/T − 1)

)2
(
8

(
1− δ

2R0

(e−t/T − 1)

)2

+ 1

))]
;

B1 =

[
1− L0

L
+

L0

L

(
1− δ

R0

(e−t/T − 1)

)−5/2
(
3

2

(
δ

2R0

(e−t/T − 1

)2

−2

(
δ

2R0

(e−t/T − 1)

)
+ 1

)]
; and λ1

′ =
8µ1L

πR0
4

(
1− usπR0

2

Q

)
(15)

For α = 2

λk =
λ2

λ2
′ =

(
1− usπR0

2

Q

)−1(
A2 −

usπR0
2

Q
B2

)
Where A2 =

[
1− L0

L
+

L0

4L

(
1− δ

2R0

(e−t/T − 1)

)(
1− δ

R0

(e−t/T − 1)

)−11/2

[
4

(
1− δ

2R0

(e−t/t − 1)

)4

+ 20

(
1− δ

2R0

(e−t/t − 1)

)2(
δ

2R0

(e−t/T − 1)

)2

+

15

2

(
δ

2R0

(e−t/T − 1)

)4
]]

;
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B2 =

[
1− L0

L
+

L0

L

(
1− δ

2R0

(e−t/T − 1)

)(
1− δ

R0

(e−t/T − 1)

)−7/2

(
5δ2

8R0
2
(e−t/T − 1)2 − δ

R0

(e−t/T − 1) + 1

)]
; and λ1

′ =
8µ1L

πR0
4

(
1− usπR0

2

Q

)
(16)

2.2. Methodology to obtain Wall shear stress
The shear stress at the wall is obtained by the following relation [7];

τw = −µ(z, t)
dw

dr

∣∣∣∣
r=R(z,t)

(17)

Using equation (9) and equation (3) we have,

τw =
4Qµ1

πR3

(
R(z, t)

R0

)−α−3

− 4µ1us

R

(
R(z, t)

R0

)−α−1

(18)

Using the above equation and substituting the value of R, the shear stress at the
maximum stenosis height can be achieved. This is represented by equation (19)

τw =
4Qµ1

πR3

(
1− δ

R0

(e−t/T − 1)

)−α−3

− 4µ1us

R

(
1− δ

R0

(e−t/T − 1)

)−α−1

(19)

or ,

τ̂w =
τwπR0

3

4Qµ1

=

(
1− πusR0

2

Q

)−1
[(

1− δ

R0

(e−t/T − 1)

)−α−3

−

πusR0
2

Q

(
1− δ

R0

(e−t/T − 1)

)−α−1
]

(20)

For α = 0, we arrive at the constant viscosity condition and the results obtained
are identical to Young (1968). Based on equation (20), it can be concluded that
an increase in the value of alpha causes the wall shear stress to increase up to the
highest stenosis height possible for a fixed stenosis size. Moreover, it is seen that
an increase in the height of stenosis causes an increase in the wall shear stress as
well. We consider the following 3 cases to study the effect of α on τ :
For α = 0

τ̂w =
τwπR0

3

4Qµ1

=

(
1− πusR0

2

Q

)−1
[(

1− δ

R0

(e−t/T − 1)

)−3

−
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πusR0
2

Q

(
1− δ

R0

(e−t/T − 1)

)−1
]

(21)

For α = 1

τ̂w =
τwπR0

3

4Qµ1

=

(
1− πusR0

2

Q

)−1
[(

1− δ

R0

(e−t/T − 1)

)−2

− πusR0
2

Q

]
(22)

For α = 2

τ̂w =
τwπR0

3

4Qµ1

=

(
1− πusR0

2

Q

)−1
[(

1− δ

R0

(e−t/T − 1)

)−1

−

πusR0
2

Q

(
1− δ

R0

(e−t/T − 1)

)]
(23)

3. Results and Discussions
In this section, the implication and influence of the physical parameters of the

flow are discussed theoretically and represented graphically. The calculations are
carried out analytically and the graphs are plotted using Matlab. Our calculations
and graphs are validated for cases with α = 0 (special case of no slip velocity
condition) by comparing them with already published work of [21]. The expression
for λk given by Eq. (14) - (16) have been determined for several variables and are
graphically represented in figures numbered 2-11. Figure 2 represents the change in
resistance of blood to flow as the height of stenosis increases for various lengths of
stenosis in the case of constant viscosity. Figures 4 and 6 show the change in flow
resistance as the stenosis height increases for different stenosis lengths for alpha =
1, 2. These figures indicate that when the value of length of stenosis if fixed, an
increase in the height of stenosis causes the resistance to increase. Furthermore,
an increase in the ratio of stenosis length causes the resistance to flow to increase
as well. Figure 3 represents the change in resistance to flow as the stenosis height
increases for distinct parameters of time in the case of constant viscosity. Figures
5 and 7 represent the flow resistance variation as the stenosis height increases for
various parameters of dimensionless time for alpha = 1, 2. On the basis of these
graphs, it can be deduced that for an inalterable value of dimensionless time, the
flow resistance increases with an increase in the height of stenosis. Furthermore,
it is observed that an increase in the dimensionless time causes an increase in
the resistance to flow. The variation of resistance to flow with stenosis height for
different values of slip velocity is shown through figures 8-11. It can be seen that
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an increase in value of slip velocity causes an increase in the resistance to flow. The
variation of resistance to flow with stenosis height for different values of alpha is
shown in figure 11. Eq. (21)-(23) are plotted in figures 12-14. Figure 12 shows the
variation of wall shear stress with stenosis height for different parameters of time
in the case of constant viscosity. Figures 13 and 14 show how the shearing stress on
wall varies with the stenosis height for alpha = 1, 2. It is observed that an increase
in height of stenosis causes the shearing stress on wall to increase. Moreover, as
the value of non-dimensionalised time t/T increases, the wall shear stress increases.
The effect of different values of slip velocity on variation of wall shear stress with
stenosis height can be seen in figures 15-17. On the basis of these graphs, it can
be concluded that an increase in the value of slip velocity causes an increase in
the shearing stress on wall. Figure 18 shows the variation of wall shear stress with
stenosis height for various values of alpha. A key observation is that an increase
in the value of alpha causes the shearing stress on wall to decreases.

ratio of stenosis/alpha 0.05 0.1 0.15 0.2 0.25 0.3
0 1.0369 1.0764 1.1185 1.1637 1.2123 1.2646
1 1.0717 1.1511 1.2391 1.3372 1.4469 1.5701
2 1.1076 1.2309 1.3727 1.5366 1.7270 1.9496

Table 1: Ratio of shearing stress with index of viscosity variation for varying steno-
sis height

Figure 1: Geometry of the stenosis in an artery

In table 1, slip velocity and time variation is kept constant, and index of viscosity
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variation is slowly increased. It is shown that the ratio of shearing stress increases
as the severity of stenosis grows. For equal increment in the severity of stenosis,
the increase in the ratio of shearing stress is exponential. This is greater in case of
a higher index of viscosity variation.

Figure 2: Resistance to flow with
stenosis height for different lengths of
stenosis when alpha = 0

Figure 3: Resistance to flow with
stenosis height for different parame-
ters of time when alpha = 0

2

Figure 4: Resistance to flow with
stenosis height for different lengths of
stenosis when alpha = 1

Figure 5: Resistance to flow with
stenosis height for different parame-
ters of time when alpha = 1
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Figure 6: Resistance to flow with
stenosis height for different lengths of
stenosis when alpha = 2

Figure 7: Resistance to flow with
stenosis height for different parame-
ters of time when alpha = 2

Figure 8: Resistance to flow with
stenosis height for different values of
slip velocity when alpha = 0

Figure 9: Resistance to flow with
stenosis height for different values of
slip velocity when alpha = 1
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Figure 10: Resistance to flow with
stenosis height for different values of
slip velocity when alpha = 2

Figure 11: Resistance to flow with
stenosis height for different values of
alpha

Figure 12: Wall shear stress with
stenosis height for different parame-
ters of time when alpha = 0

Figure 13: Wall shear stress with
stenosis height for different parame-
ters of time when alpha = 1
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Figure 14: Wall shear stress with
stenosis height for different parame-
ters of time when alpha = 2

Figure 15: Wall shear stress with
stenosis height for different values of
slip velocity when alpha = 0

Figure 16: Wall shear stress with
stenosis height for different values of
slip velocity when alpha = 1

Figure 17: Wall shear stress with
stenosis height for different values of
slip velocity when alpha = 2
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Figure 18: Wall shear stress with
stenosis height for different values of
alpha

4. Conclusion
The proposed model analyzes the effects of red cells, when aggregated, on

the blood flow, causing the viscosity to axially variate in the region of an artery
which is time-dependent stenotic. It is found that an increase in the value of non-
dimensionalized time t/T, stenosis height or stenosis length is directly proportional
to the flow resistance of blood and the wall shear stress. This study analyzes the
effect of pressure on the walls of the artery which play a crucial role in the early
detection of cerebrovascular and cardiovascular system-related stroke problems.
Understanding the into abnormal flow through the relations between resistance to
flow and stenosis height can help identify risks of complications like blood clots,
aneurysms, or ischemia which can further help tailor treatments depending on the
shape and size of the stenosis. We hope the findings presented through this study
could be utilized in a more accurate flow detection in bio-medical instruments.
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